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The Langevin equation to derive the Fokker-Planck equation is ured for the 

Brownian motion of particles in translational motion. The Fokker-Planck equa- 
tion for the Brownian motion of particles which have,in addition to the transla- 
tional velocity also an angular velocity, has not, so far, been derived. This can 
apparently be explained by the fact that in the case of the rotational motion, 

the Langevin equation for the translational motion velocity vector must be sup- 

plemented by a corresponding equation for an angular velocity vector. The lat- 
ter equation must contain, in addition to the systematic moment of reaction 
linearly dependent on the angular velocity of rotation itself, a random moment 

rapidly varying with time. Moreover, to ensure the compatibility of two differ- 

ential vector equations within the system, additional relations which must be 
introduced, must connect not only the coefficients of the systematic reactions, 

but also the random vectors varying rapidly with time. 

In [l],the Boltzmann’s equation for a mixture of two gases was used to derive 
a Fokker-Planck equation for a translational motion of Brownian particles. The 

same method can be applied to the Brownian motion of spherical particles which 

have, in addition to the translational velocities, angular velocities of self-rota- 
tions. In this case there is no need to introduce additional relations connecting 

the random rapidly varying vectors. 
In the present paper we derive the Fokker-Planck equations for a new model 

of rotating spherical molecules which was used in [2]. 

1, We derive the basic Boltzmann’s equation for the Brownian motion of rotatingsphe- 
rical particles, as in [l],we consider a mixture of two gases in a homogeneous state,dis- 
regarding the action of external forces. We shall call the particles of the first gas the 

Brownian particles. The mass of such a particle is much greater than the mass of a par- 
ticle of the second gas, and their number per unit volume is much smaller than that of 

the particles of the second gas, i. e. 

Using these assumptions we can dispense with one of the Boltzmann’s equations and re- 
tain the equation the right-hand side of which contains a single integral of collisions of 
the Brownian particles with the particles of the second gas. This basic equation can be 

written in the form (see [S]) 

VI 
at = n,u2 

sss 
(il’fz’ - hfz) @I - %I kdk dc&h 

Cot) (cd W 

(1.2) 

1068 



Fokker-Planck equation for Brownian motion of particles 1069 

where ci and cs are the velocity vectors of the translational motion of the particles,o, 
is the angular velocity vector sf rotation of the particles of the second gas, k is the unit 
direction vector from the center of the Brownian particle to the center of the particle of 
the second gas at the instant of their direct collision, fr and fa are the velocity distri- 

bution functions of the particles in the mixture before their direct collision, fi’ and fs’ 
are the same functions before their reverse collision, and o is the sum of the radii of the 
spherical particles, i. e. u = a, + a4 

Repeating the arguments used in [l] we can show that for the particles of the secondgas, 

we can use an expression for the Maxwellian velocity distribution function of the limit- 
ing thermodynamic state of equilibrium of the second gas, of the form 

(m2Z2T ’ fz= (‘&kT,)S e=P ( m2c2a + 1~02~ 
- 1 

2kT, / 
(1.3) 

where I, is the axial moment of inertia of a particle of the second gas and Ta is the 

partial temperature of this gas, 

Introducing the differences in the projections on the fixed axes of the vectors cr’, cr, 
al’ and ol, i.e. AC,~ = cli’ - Cri, Ao,~ = O’li - Oli 

(1.4) 
we can write the velocity distribution function of the Brownian particles before their re- 

verse collision with the light particles, in the form of a Taylor series 

setting now 

1=3 

r;=r,+C~[~(Ael,~+A~li~)(r)(~l)l (1.5) 

V=l i=l 

I, = mIXI, I2 = m2xz = Em,%2 (1.6) 

and using the law of conservation of the sum of the kinetic energies during the reverse 

collision between the particles in question, we obtain 

rs 
’ ca + %% 

ra = $2 + xzo2a - 7 [(Be, + AC,) AC, + x1(2~ + A@,). A%] (1.7) 

Substituting (1.7) into the corresponding equation for fi’, we obtain 

The series in the right-hand side of (1.8) represent the expansion of f2’ in powers of fi 
provided that we assume the velocities c2 and op to be of the order of unity, the veloci- 

ties of the Brownian particles of the order of fi, and the differences AC, and ACO~ of 
the order of e. 

Substituting the expressions (1.5) and (1.8) and writing out the terms of the order of 
smaller powers of E , we can obtain 
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2. The authors of [S] discuss a Bryan model of a rotating molecule with an absolutely 
rough spherical surface, while in [2] a new model of a rotating molecule is introduced 

under the assumption that its surface is absolutely elastic. The following laws are obeyed 
in both cases : (1) the law of conservation of the sum of kinetic energies of the rotating 
particles in collision: (2) the law of conservation of the volume element of the 12-di- 

mensional space of velocities during the collision of the particles ; (3) the law of mutu- 

al conversion of the proportions of the kinetic energy due to the rotational motionsofthe 

particles into certain proportions of the kinetic energy due to their translational motions. 

The above models differ from each other in the fact that in the Bryan model the impulses 

due to collisions are represented by their single principal vector, while in the new model 
the impulses distributed over some small area near the initial point of contact between 

the particles are reduced to the principal vector and their principal moment. One of the 
two conditions of absolute elasticity of the surfaces of the colliding particles coincides 

with the condition of absolute elastic roughness in the Bryan model, and the second con- 
dition is reduced to the equality of differences of the angular velocities of these particles 

before and after collisions but with the sign reversed. For the model of rotating molecules 

with absolutely elastic surfaces, the formulas of relations of the thermal velocities el’and 
01’ before the reverse collision with the thermal velocities c1 and o1 before the direct 

collision are represented in the form 

Cl 
-cl=Acl= (1+e)(x,+~~)+e(ol+a2)2 x 

(2.1) 

1 
(XI + ex2)(c2 -~l)+(~l+~2)(~~2~2+w'l)xk+ -& (al+ Q2)2 x 
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(1 + a) (x1 + axz) + a (al + 2X 
~2) 

k x (~2 -cl)- 
x2(i+d 
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Since, in what follows we shall compute the whole of the right-hand side of (1.2) ta- 
king into account the terms of order not higher than a , and the expression (1.9) includes 

factors accompanying afI / ac, and ati I &I, which are of the order of 1 I v& we must 
retain in the right-hand sides of (2.1) terms with the order of smallness of IZ*‘~. We can 
therefore replace the exact formulas (2.1) by the approximate expressions of the form 

AC, = 2e (c2 - c1 -+ 60~ x k) (2.2) 

2e 

AO1=-K 
[ok x (e, - ~1) - ~202 + (x2 + e”) or - ask (oI. k)] 

3. The integration in the right-hand side of (1.2) over the elementary solid angle dk 
must be carried out within a hemisphere the center of which coincides with the center 
of a fixed Brownian particle at the instant of its direct collision with a particle of the 
second gas, and the symmetry axis of this hemisphere must be perpendicular to the vec- 
tor of relative velocity e2 - c1 of the particle of the second gas impinging on the Brown- 

ian particle. Choosing the angles in appropriate manner, we have 
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dk = sin adadg, (3-V 

The limits of integration over the angle a formed by the vector k and the direction of the 
vector difference c1 - cz will be 0 and n / 2, and the limits for the angle cp will be 0 and 

2n. In particular we have 
1 (cl--c2). kdk = n 1 cl--c2 1 (3.2) 
W 

The modulus of relative velocity 1 cl - c2 1 in (3.2) can be expanded into a Newton’s 
binomial in the form 

(3.3) 

When Eqs, (2.2) and (3.2) are used, terms of the order of smallness higher than the first 
order of e appear in the right-hand side of (1.2). Because of this it is expedient to ex- 

pand separately, before integrating over the solid angle dk the terms of the integrand 

expression in (1.2) and retain only the terms which are of first order in E . To find the 
. . 

projectrons Aoli on the fixed axes -z,, Q and 5s we must use a table [4] of the direc- 
tion cosinesbf the fixed Brownian particle axes El, fz and Es and compute the projec- 

tions of the unit vector k on the fixed axes. Using these computations, we obtain 

k, = sin a co8 rp cos S$ - sin a sin ‘p sin 21’ cos 9 f 60s a sin B sin 4 (3.4) 
an xts 

s s d”p k: cos a sin ada = G (I+ sins0 sins+) (3.5) 
0 0 

where I3 is the angle between Es and za, 4 is the angle between g1 and xi and ,the axis 

& is the nodal line. The volume elements of the spaces c, and o, are given in spheri- 

cal coordinates, e. g. de% = cza sin 0, a.G@,d& 

The formulas governing the passage from the angles 6 and Ip to the angles 6, and qS 

have the form 
co3e=--co302 1+- 

( 

Q*C2 

c2 
+ ++ o(s) (3.7) 

sin 6 sin it, = -sin6,cos*, 
( 

l+y +2 
) 

+ 0 (4 

sin0cos*=sin82sin$2 t+y) -2+$_(e) 
( 

4, Substituting (1.9) into the right-hand side of (1.2), using (2.2) and the correspond- 
ing expansions of the separate terms of the integrand expression in (1.2) which were con- 

sidered in Sect. 3, and computing the numerous quadratures, we obtain the following Fok- 

ker-Planck equation : 

% = WI + B2s. 2 + I’wI* $+ f&h + BsA& (4.1) 

where AC, and As are the Laplace operators in the vector spaces c1 and ai, and the co- 

efficients have the form 
Bl=‘+3++2~)n252 JF (4.2) 
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Equations (4.2) yield the relations 

B1= 3@z$Bs), B4=3iL @a = $ &I 

which can be used to obtain the Fokker-Planck equation (4.1) for rotating particles with 
absolutely elastic surfaces in the form 

afl a -=- 
at a0, ( 1 (4.3) 

When 8fr / at = 0 , Eq. (4.3) is satisfied by the Maxwell function of velocity distribu- 
tion of the equi~rium ~ermodynan~c state the form of which coincides with (1,3) 

when the subscript 2 is replaced by subscript 1. The Fokker-Planck equation enables us 
to construct the functions of thermodynamic equilibrium and to find the form of the ve- 

locity distribution functions for the state near to the thermodynamic equilibrium in the 

manner shown in [S]. 

Comparing Eqs. (4.3) with the Fokker-Planck equation for the particles in translational 
motion [I], we can establish that the terms of (4.3) referring to the ~anslational velocity 

have identical structure and the coefficient & becomes equal to 2& when 6 = u . The 
structure of the terms with angular velocity of rotation is the same as the structure of the 

terms with translational velocity, but the coefficient pa contains, apart from the quanti- 
ties appearing in &, also the moments of inertia of the Brownian particles and ofthepar- 

ticbs belonging to the surrounding medium, 
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